When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two-vector - Wikipedia

    en.wikipedia.org/wiki/Two-vector

    A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...

  3. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...

  4. Pairing function - Wikipedia

    en.wikipedia.org/wiki/Pairing_function

    A pairing function can usually be defined inductively – that is, given the n th pair, what is the (n+1) th pair? The way Cantor's function progresses diagonally across the plane can be expressed as (,) + = (, +).

  5. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    This vector length is equivalent to the dimensions of the original matrix output , making converting back to a matrix a direct transformation. Thus, the vector, Z ″ {\displaystyle Z''} , is converted back to matrix form, which produces the output of the two-dimensional discrete convolution.

  6. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    Basis Decomposition of a 2-vector. For vectors in R 3, the exterior algebra is closely related to the cross product and triple product.Using the standard basis {e 1, e 2, e 3}, the exterior product of a pair of vectors

  7. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In linear recurrences, the n th term is equated to a linear function of the previous terms. A famous example is the recurrence for the Fibonacci numbers , F n = F n − 1 + F n − 2 {\displaystyle F_{n}=F_{n-1}+F_{n-2}} where the order k {\displaystyle k} is two and the linear function merely adds the two previous terms.

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus the derivative of a vector y with respect to a scalar x is known as the tangent vector of the vector y, . Notice here that y : R 1 → R m . Example Simple examples of this include the velocity vector in Euclidean space , which is the tangent vector of the position vector (considered as a function of time).

  9. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]