Search results
Results From The WOW.Com Content Network
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
The statistical definition of entropy defines it in terms of the statistics of the motions of the microscopic constituents of a system — modelled at first classically, e.g. Newtonian particles constituting a gas, and later quantum-mechanically (photons, phonons, spins, etc.). The two approaches form a consistent, unified view of the same ...
The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."
In physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (from German 'reversal objection'), [1] is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics.
This would decrease the total entropy of the system, seemingly without applying any work, thereby violating the second law of thermodynamics. The concept of Maxwell's demon has provoked substantial debate in the philosophy of science and theoretical physics, which continues to the present day.
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, :. Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time reversal.
Other applications exploit that entropy and internal energy are state functions whose change depends only on the initial and final states of the system, not on how the process occurred. [6] Therefore, the entropy and internal-energy change in a real process can be calculated quite easily by analyzing a reversible process connecting the real ...
In the 1928 book The Nature of the Physical World, which helped to popularize the concept, Eddington stated: . Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random element in the state of the world, then the arrow is pointing towards the future; if the random element decreases the arrow points towards the past.