When.com Web Search

  1. Ad

    related to: kolmogorov turbulence model for sale cheap

Search results

  1. Results From The WOW.Com Content Network
  2. Kolmogorov microscales - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_microscales

    where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.

  3. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]

  4. Energy cascade - Wikipedia

    en.wikipedia.org/wiki/Energy_cascade

    The dynamics at these scales is described by use of self-similarity, or by assumptions – for turbulence closure – on the statistical properties of the flow in the inertial subrange. A pioneering work was the deduction by Andrey Kolmogorov in the 1940s of the expected wavenumber spectrum in the turbulence inertial subrange.

  5. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged Navier–Stokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...

  6. Taylor microscale - Wikipedia

    en.wikipedia.org/wiki/Taylor_microscale

    In fluid dynamics, the Taylor microscale, which is sometimes called the turbulence length scale, is a length scale used to characterize a turbulent fluid flow. [1] This microscale is named after Geoffrey Ingram Taylor .

  7. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    SST (Menter's shear stress transport) turbulence model [11] is a widely used and robust two-equation eddy-viscosity turbulence model used in computational fluid dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k ...

  8. Category:Turbulence models - Wikipedia

    en.wikipedia.org/wiki/Category:Turbulence_models

    Turbulence models use different methods to model fluctuations inherent in the full Navier-Stokes equations. They are used because the use of the full Navier-Stokes equations is normally computationally impractical.

  9. Two-dimensional quantum turbulence - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_quantum...

    The quantum vortex dynamics can exhibit signatures of turbulence including a Kolmogorov −5/3 power law, [3] [4] [5] a quantum manifestation of the inertial transport of energy to large scales observed in classical fluids, known as an inverse energy cascade. [6] [7]