When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  3. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    Having found one set (left of right) of approximate singular vectors and singular values by applying naively the Rayleigh–Ritz method to the Hermitian normal matrix or , whichever one is smaller size, one could determine the other set of left of right singular vectors simply by dividing by the singular values, i.e., = / and = /. However, the ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The representation-theoretical concept of weight is an analog of eigenvalues, while weight vectors and weight spaces are the analogs of eigenvectors and eigenspaces, respectively. Hecke eigensheaf is a tensor-multiple of itself and is considered in Langlands correspondence .

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Also, the power method is the starting point for many more sophisticated algorithms. For instance, by keeping not just the last vector in the sequence, but instead looking at the span of all the vectors in the sequence, one can get a better (faster converging) approximation for the eigenvector, and this idea is the basis of Arnoldi iteration. [11]

  8. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    The following algorithm is a description of the Jacobi method in math-like notation. It calculates a vector e which contains the eigenvalues and a matrix E which contains the corresponding eigenvectors; that is, e i {\displaystyle e_{i}} is an eigenvalue and the column E i {\displaystyle E_{i}} an orthonormal eigenvector for e i {\displaystyle ...

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    This method computes the SVD of the bidiagonal matrix by solving a sequence of ⁠ ⁠ SVD problems, similar to how the Jacobi eigenvalue algorithm solves a sequence of ⁠ ⁠ eigenvalue methods (Golub & Van Loan 1996, §8.6.3).