When.com Web Search

  1. Ad

    related to: zero mean and unit variance statistics

Search results

  1. Results From The WOW.Com Content Network
  2. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines, logistic regression, and artificial neural networks).

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    It is also the continuous distribution with the maximum entropy for a specified mean and variance. [18] [19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the only distribution where the mean and variance calculated from a set of independent draws are independent of each other. [20] [21]

  4. Unit root - Wikipedia

    en.wikipedia.org/wiki/Unit_root

    In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation .

  5. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    In probability theory and statistics, ... are independent and each is a zero-mean unit-variance normally distributed random variable, i.e. if ...

  6. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    Since scales a normalized variable, it can be used to invert the transformation, and make it decorrelated and unit-variance: = has zero mean and identity covariance. This is called the Mahalanobis whitening transform .

  7. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A much simpler result, stated in a section above, is that the variance of the product of zero-mean independent samples is equal to the product of their variances. Since the variance of each Normal sample is one, the variance of the product is also one. The product of two Gaussian samples is often confused with the product of two Gaussian PDFs.

  8. Normal score - Wikipedia

    en.wikipedia.org/wiki/Normal_score

    The term normal score is used with two different meanings in statistics. One of them relates to creating a single value which can be treated as if it had arisen from a standard normal distribution (zero mean, unit variance). The second one relates to assigning alternative values to data points within a dataset, with the broad intention of ...

  9. Complex normal distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_normal_distribution

    The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,