When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    The elastic net method includes the LASSO and ridge regression: in other words, each of them is a special case where =, = or =, =. Meanwhile, the naive version of elastic net method finds an estimator in a two-stage procedure : first for each fixed λ 2 {\displaystyle \lambda _{2}} it finds the ridge regression coefficients, and then does a ...

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    An important difference between lasso regression and Tikhonov regularization is that lasso regression forces more entries of to actually equal 0 than would otherwise. In contrast, while Tikhonov regularization forces entries of w {\displaystyle w} to be small, it does not force more of them to be 0 than would be otherwise.

  4. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model. The lasso method ...

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    L1 regularization (also called LASSO) leads to sparse models by adding a penalty based on the absolute value of coefficients. L2 regularization (also called ridge regression ) encourages smaller, more evenly distributed weights by adding a penalty based on the square of the coefficients.

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Proximal gradient methods for learning - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_methods...

    Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form + (),where is convex and differentiable with Lipschitz continuous gradient, is a convex, lower semicontinuous function which is possibly nondifferentiable, and is some set, typically a Hilbert space.

  8. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The prior distribution can bias the solutions for the regression coefficients, in a way similar to (but more general than) ridge regression or lasso regression. In addition, the Bayesian estimation process produces not a single point estimate for the "best" values of the regression coefficients but an entire posterior distribution , completely ...