Search results
Results From The WOW.Com Content Network
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. [1]In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. [2]
A horizon is a boundary in spacetime satisfying prescribed conditions. There are several types of horizons that play a role in Albert Einstein 's theory of general relativity : Absolute horizon , a boundary in spacetime in general relativity inside of which events cannot affect an external observer
Closed trapped surfaces are a concept used in black hole solutions of general relativity [1] which describe the inner region of an event horizon. Roger Penrose defined the notion of closed trapped surfaces in 1965. [2] A trapped surface is one where light is not moving away from the black hole.
For example, a glass breaking on the floor is an event; it occurs at a unique place and a unique time. [1] Strictly speaking, the notion of an event is an idealization , in the sense that it specifies a definite time and place, whereas any actual event is bound to have a finite extent, both in time and in space.
As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
The photon sphere is located farther from the center of a black hole than the event horizon. Within a photon sphere, it is possible to imagine a photon that is emitted (or reflected) from the back of one's head and, following an orbit of the black hole, is then intercepted by the person's eye, allowing one to see the back of the head, see e.g. [2]
It is the speed of light that arbitrarily defines the ergosphere surface. Such a surface would appear as an oblate that is coincident with the event horizon at the pole of rotation, but at a greater distance from the event horizon at the equator. Outside this surface, space is still dragged, but at a lesser rate. [citation needed]