When.com Web Search

  1. Ads

    related to: summation of two vectors worksheet printable free 4th grade

Search results

  1. Results From The WOW.Com Content Network
  2. Multivector - Wikipedia

    en.wikipedia.org/wiki/Multivector

    In geometric algebra, a multivector is defined to be the sum of different-grade k-blades, such as the summation of a scalar, a vector, and a 2-vector. [17] A sum of only k-grade components is called a k-vector, [18] or a homogeneous multivector. [19] The highest grade element in a space is called a pseudoscalar.

  3. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    Minkowski sums act linearly on the perimeter of two-dimensional convex bodies: the perimeter of the sum equals the sum of perimeters. Additionally, if K {\textstyle K} is (the interior of) a curve of constant width , then the Minkowski sum of K {\textstyle K} and of its 180° rotation is a disk.

  4. Two-vector - Wikipedia

    en.wikipedia.org/wiki/Two-vector

    A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...

  5. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    The cross product of two vectors in dimensions with positive-definite quadratic form is closely related to their exterior product. Most instances of geometric algebras of interest have a nondegenerate quadratic form. If the quadratic form is fully degenerate, the inner product of any two vectors is always zero, and the geometric algebra is then ...

  6. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The fundamental difference is that GA provides a new product of vectors called the "geometric product". Elements of GA are graded multivectors: scalars are grade 0, usual vectors are grade 1, bivectors are grade 2 and the highest grade (3 in the 3D case) is traditionally called the pseudoscalar and designated .

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.