When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  3. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  4. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  5. Contraction mapping - Wikipedia

    en.wikipedia.org/wiki/Contraction_mapping

    The smallest such value of k is called the Lipschitz constant of f. Contractive maps are sometimes called Lipschitzian maps. If the above condition is instead satisfied for k ≤ 1, then the mapping is said to be a non-expansive map. More generally, the idea of a contractive mapping can be defined for maps between metric spaces.

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The particular case = is referred to as Lipschitz continuity. That is, a function is Lipschitz continuous if there is a constant K such that the inequality ((), ()) (,) holds for any ,. [15] The Lipschitz condition occurs, for example, in the Picard–Lindelöf theorem concerning the solutions of ordinary differential equations.

  7. Equicontinuity - Wikipedia

    en.wikipedia.org/wiki/Equicontinuity

    For uniform continuity, δ may depend on ε and ƒ. For pointwise equicontinuity, δ may depend on ε and x 0. For uniform equicontinuity, δ may depend only on ε. More generally, when X is a topological space, a set F of functions from X to Y is said to be equicontinuous at x if for every ε > 0, x has a neighborhood U x such that

  8. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus — differentiation and integration .

  9. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Many of the basic notions of mathematical analysis, including balls, completeness, as well as uniform, Lipschitz, and Hölder continuity, can be defined in the setting of metric spaces. Other notions, such as continuity , compactness , and open and closed sets , can be defined for metric spaces, but also in the even more general setting of ...