When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    A function f: R → R is bijective if and only if its graph meets every horizontal and vertical line exactly once. If X is a set, then the bijective functions from X to itself, together with the operation of functional composition (∘), form a group, the symmetric group of X, which is denoted variously by S(X), S X, or X! (X factorial).

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]

  4. Bijective numeration - Wikipedia

    en.wikipedia.org/wiki/Bijective_numeration

    Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits.The name refers to the bijection (i.e. one-to-one correspondence) that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols (the "digits").

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The Leibniz formula for the determinant of a 3 × 3 matrix is the ... is a bijective function ... so there is no good definition of the determinant in this ...

  6. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    The set of all bijective functions f: X → X (called permutations) forms a group with respect to function composition. This is the symmetric group , also sometimes called the composition group . In the symmetric semigroup (of all transformations) one also finds a weaker, non-unique notion of inverse (called a pseudoinverse) because the ...

  7. Bijective proof - Wikipedia

    en.wikipedia.org/wiki/Bijective_proof

    In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain ...

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    As a word of caution, "a one-to-one function" is one that is injective, while a "one-to-one correspondence" refers to a bijective function. Also, the statement "f maps X onto Y" differs from "f maps X into B", in that the former implies that f is surjective, while the latter makes no assertion about the nature of f. In a complicated reasoning ...

  9. Combinatorial principles - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_principles

    The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).