When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer triangle - Wikipedia

    en.wikipedia.org/wiki/Integer_triangle

    The number of integer triangles (up to congruence) with given largest side c and integer triple (,,) is the number of integer triples such that + > and . This is the integer value ⌈ (+) ⌉ ⌊ (+) ⌋. [3] Alternatively, for c even it is the double triangular number (+) and for c odd it is the square (+).

  3. Triangular array - Wikipedia

    en.wikipedia.org/wiki/Triangular_array

    The Bell triangle, whose numbers count the partitions of a set in which a given element is the largest singleton [1] Catalan's triangle, which counts strings of matched parentheses [2] Euler's triangle, which counts permutations with a given number of ascents [3] Floyd's triangle, whose entries are all of the integers in order [4]

  4. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...

  5. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Usually, the 32-bit and 64-bit IEEE 754 binary floating-point formats are used for float and double respectively. The C99 standard includes new real floating-point types float_t and double_t, defined in <math.h>. They correspond to the types used for the intermediate results of floating-point expressions when FLT_EVAL_METHOD is 0, 1, or 2.

  6. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  7. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    With a the shorter and b the longer legs of a triangle and c its hypotenuse, the Pythagoras family of triplets is defined by c − b = 1, the Plato family by c − b = 2, and the Fermat family by | a − b | = 1. The Stifel sequence produces all primitive triplets of the Pythagoras family, and the Ozanam sequence produces all primitive triples ...

  8. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    The basic interface is for C, but wrappers exist for other languages, including Ada, C++, C#, Julia, .NET, OCaml, Perl, PHP, Python, R, Ruby, and Rust. Prior to 2008, Kaffe, a Java virtual machine, used GMP to support Java built-in arbitrary precision arithmetic. [7] Shortly after, GMP support was added to GNU Classpath. [8]

  9. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The formulas show how to transform any right triangle with integer legs into another right triangle with integer legs whose hypotenuse is the square of the first triangle's hypotenuse. A Pythagorean prime is a prime number of the form 4 n + 1 {\displaystyle 4n+1} .