When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.

  3. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  4. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.

  5. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α. Then, because the natural numbers less than and relatively prime to 3 2 − 1 = 8 are 1, 3, 5, and 7, the four primitive roots in GF(3 2) are α, α 3 = 2α + 1, α 5 = 2α, and α 7 = α + 2. The primitive roots α and α 3 are algebraically conjugate.

  6. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    Minimal polynomials are useful for constructing and analyzing field extensions. When α is algebraic with minimal polynomial f(x), the smallest field that contains both F and α is isomorphic to the quotient ring F[x]/ f(x) , where f(x) is the ideal of F[x] generated by f(x). Minimal polynomials are also used to define conjugate elements.

  7. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result. In numerical analysis , an n -point Gaussian quadrature rule , named after Carl Friedrich Gauss , [ 1 ] is a quadrature rule constructed to yield an exact result for polynomials of degree 2 n − 1 ...

  8. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  9. Splitting field - Wikipedia

    en.wikipedia.org/wiki/Splitting_field

    The splitting field of x 2 + 1 over F 7 is F 49; the polynomial has no roots in F 7, i.e., −1 is not a square there, because 7 is not congruent to 1 modulo 4. [3] The splitting field of x 2 − 1 over F 7 is F 7 since x 2 − 1 = (x + 1)(x − 1) already splits into linear factors. We calculate the splitting field of f(x) = x 3 + x + 1 over F 2.