Search results
Results From The WOW.Com Content Network
Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. [1]
Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to ...
Electromagnetic shielding cages inside a disassembled mobile phone.. In electrical engineering, electromagnetic shielding is the practice of reducing or redirecting the electromagnetic field (EMF) in a space with barriers made of conductive or magnetic materials.
In Electrical systems, such as telecommunications, power electronics, industrial electronics, power engineering; electromagnetic interference (EMI) control is the control of radiated and conducted energy such that emissions that are unnecessary for system, subsystem, or equipment operation are reduced, minimized, or eliminated.
Henry Ott remarked something similar in his book. Differential mode is the result of the normal operation of the circuit and results from electric current flowing around loops formed by the electrical conductors of the circuit. Common mode is the result of parasitics in the circuit and results from undesired voltage drops in the conductors. [4]
The resulting rapidly changing electric fields and magnetic fields may couple with electrical/electronic systems to produce damaging current and voltage surges. [ 11 ] The intense gamma radiation emitted can also ionize the surrounding air, creating a secondary EMP as the atoms of air first lose their electrons and then regain them.
If circuit 2 is an audio system and circuit 1 has large AC currents flowing in it, the interference may be heard as a 50 or 60 Hz hum in the speakers. Also, both circuits have voltage on their grounded parts that may be exposed to contact, possibly presenting a shock hazard. This is true even if circuit 2 is turned off.
resistors: the braking resistors of electric trains, used to dissipate electrical power when the catenary is not receptive during braking, can make electromagnetically induced acoustic noise; coils: in magnetic resonance imaging, "coil noise" is that part of total system noise attributed to the receiving coil, due to its non-zero temperature.