Search results
Results From The WOW.Com Content Network
A graph that contains a Hamiltonian path is called a traceable graph. A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once.
The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.
Ore's theorem is a result in graph theory proved in 1960 by Norwegian mathematician Øystein Ore. It gives a sufficient condition for a graph to be Hamiltonian, essentially stating that a graph with sufficiently many edges must contain a Hamilton cycle.
An equivalent formulation in terms of graph theory is: Given a complete weighted graph (where the vertices would represent the cities, the edges would represent the roads, and the weights would be the cost or distance of that road), find a Hamiltonian cycle with the least weight.
A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.
Pósa's theorem, in graph theory, is a sufficient condition for the existence of a Hamiltonian cycle based on the degrees of the vertices in an undirected graph. It implies two other degree-based sufficient conditions, Dirac's theorem on Hamiltonian cycles and Ore's theorem. Unlike those conditions, it can be applied to graphs with a small ...
The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle. The resulting Tutte graph is 3-connected and planar, so by Steinitz' theorem it is the graph of a polyhedron. In ...
If the additional requirement is imposed that every vertex of the graph be visited exactly once—specifically that every vertex occur exactly once as the head of a directed edge in the path—then a Hamiltonian circuit is obtained. Finding such a circuit was one of the challenges posed by Hamilton's icosian game.