Search results
Results From The WOW.Com Content Network
The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD +, and NADP +.This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich.
DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. [ 3 ] [ 4 ] [ 5 ] Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA , because it exposes more functional groups that identify a base pair .
Related proteins are found in bacterial plant pathogen Ralstonia solanacearum, [18] the fungal endosymbiont Burkholderia rhizoxinica [19] and two as-yet unidentified marine-microorganisms. [20] The DNA binding code and the structure of the repeat array is conserved between these groups, referred to collectively as the TALE-likes .
A distinct group of DNA-binding proteins is the DNA-binding proteins that specifically bind single-stranded DNA. In humans, replication protein A is the best-understood member of this family and is used in processes where the double helix is separated, including DNA replication, recombination, and DNA repair. [ 123 ]
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Efforts to understand how proteins are encoded began after DNA's structure was discovered in 1953. The key discoverers, English biophysicist Francis Crick and American biologist James Watson, working together at the Cavendish Laboratory of the University of Cambridge, hypothesied that information flows from DNA and that there is a link between DNA and proteins. [2]
The majority of proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multidomain proteins. [39] However, other studies concluded that 40% of prokaryotic proteins consist of multiple domains while eukaryotes have approximately 65% multi-domain proteins.
DNA binding sites are distinct from other binding sites in that (1) they are part of a DNA sequence (e.g. a genome) and (2) they are bound by DNA-binding proteins. DNA binding sites are often associated with specialized proteins known as transcription factors, and are thus linked to transcriptional regulation.