When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]

  3. Speech recognition - Wikipedia

    en.wikipedia.org/wiki/Speech_recognition

    Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text (STT).

  4. List of speech recognition software - Wikipedia

    en.wikipedia.org/wiki/List_of_speech_recognition...

    Speech recognition functionality included as part of Microsoft Office and on Tablet PCs running Microsoft Windows XP Tablet PC Edition. It can also be downloaded as part of the Speech SDK 5.1 for Windows applications, but since that is aimed at developers building speech applications, the pure SDK form lacks any user interface (numerous ...

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The three embedding vectors are added together representing the initial token representation as a function of these three pieces of information. After embedding, the vector representation is normalized using a LayerNorm operation, outputting a 768-dimensional vector for each input token. After this, the representation vectors are passed forward ...

  6. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  7. Viterbi algorithm - Wikipedia

    en.wikipedia.org/wiki/Viterbi_algorithm

    For example, in speech-to-text (speech recognition), the acoustic signal is treated as the observed sequence of events, and a string of text is considered to be the "hidden cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of text given the acoustic signal.

  8. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words.

  9. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The BoW representation of a text removes all word ordering. For example, the BoW representation of "man bites dog" and "dog bites man" are the same, so any algorithm that operates with a BoW representation of text must treat them in the same way. Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple ...