Search results
Results From The WOW.Com Content Network
Python has array index and array slicing expressions in lists, denoted as a[key], a [start: stop] or a [start: stop: step]. Indexes are zero-based, and negative indexes are relative to the end. Slices take elements from the start index up to, but not including, the stop index.
first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first) step – the number of array elements in each (default 1)
Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6). In programming languages that use a 0-based indexing scheme, the slice would be from index 2 to 5. Reducing the range of any index to a single value effectively eliminates that index.
The product of a step function with a number is also a step function. As such, the step functions form an algebra over the real numbers. A step function takes only a finite number of values. If the intervals , for =,, …, in the above definition of the step function are disjoint and their union is the real line, then () = for all .
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.
Thus the derivative of the Heaviside step function can be seen as the inward normal derivative at the boundary of the domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some domain D.
The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent.