When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks. [25]

  3. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Local binary patterns (LBP) is a type of visual descriptor used for classification in computer vision. LBP is the particular case of the Texture Spectrum model proposed in 1990. [1] [2] LBP was first described in 1994.

  4. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    The set of images in the MNIST database was created in 1994. Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2).

  5. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    Binary classification is the task of classifying the elements of a set into one of two groups (each called class). Typical binary classification problems include: Medical testing to determine if a patient has a certain disease or not; Quality control in industry, deciding whether a specification has been met;

  6. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Unlike typical MLP training, which only updates the weights, NLPCA updates both the weights and the inputs. That is, both the weights and inputs are treated as latent values. After training, the latent inputs are a low-dimensional representation of the observed vectors, and the MLP maps from that low-dimensional representation to the high ...

  7. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements. The dominant approach for doing so is to reduce the single multiclass problem into multiple binary classification problems. [ 30 ]

  8. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  9. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    In classification problems the fixed non-linearity introduced by the sigmoid output function is most efficiently dealt with using iteratively re-weighted least squares. RBF networks have the disadvantage of requiring good coverage of the input space by radial basis functions.