Search results
Results From The WOW.Com Content Network
hydrogen sulfide chemosynthesis: [1] 18H 2 S + 6CO 2 + 3 O 2 → C 6 H 12 O 6 (carbohydrate) + 12H 2 O + 18 S. In the above process, hydrogen sulfide serves as a source of electrons for the reaction. [6] Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of ...
The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as an electron donor in photosynthesis, thereby producing elemental sulfur. This mode of photosynthesis is older than the mode of cyanobacteria, algae, and plants, which uses water as electron donor and liberates oxygen.
The energy of the photon is used to excite an electron of a pigment. The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H 2 O or hydrogen sulfide towards carbon dioxide, eventually producing glucose.
Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen).
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Shown above as a result of a 7-week period where the columns have been allowed to grow algae, cyanobacteria and other bacterial colonies. Of specific interest are the red regions of the middle column, indicative of purple non-sulfur bacteria (e.g. Rhodospirillaceae).
In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP ( photophosphorylation ) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b 6 f uses electrons from PSII and energy from PSI [ citation needed ] to pump protons from the stroma to the lumen .
Photosynthesis systems function by measuring gas exchange of leaves. Atmospheric carbon dioxide is taken up by leaves in the process of photosynthesis, where CO 2 is used to generate sugars in a molecular pathway known as the Calvin cycle. This draw-down of CO 2 induces more atmospheric CO 2 to diffuse through stomata into the air spaces of the ...