When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  4. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

  5. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).

  6. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

  7. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The formula for the magnitude of the angle suggests that, for < <, the hyperbolic angle should be negative. This reflects the fact that, as defined, the angle is directed. Finally, extend the definition of hyperbolic angle to that subtended by any interval on the hyperbola.

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  9. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    This formula can be derived from a power series expansion using the fact that cosh has only even powers while that for sinh has odd powers. [2] For all real values of the hyperbolic angle θ the split-complex number λ = exp( jθ ) has norm 1 and lies on the right branch of the unit hyperbola.