When.com Web Search

  1. Ads

    related to: radius of circle formula equation worksheet pdf kuta free math

Search results

  1. Results From The WOW.Com Content Network
  2. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek κύκλος (kuklos), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus.

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...

  6. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.

  8. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The unit circle centered at the origin in the Euclidean plane is defined by the equation: [2] x 2 + y 2 = 1. {\displaystyle x^{2}+y^{2}=1.} Given an angle θ , there is a unique point P on the unit circle at an anticlockwise angle of θ from the x -axis, and the x - and y -coordinates of P are: [ 3 ]

  9. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.