When.com Web Search

  1. Ads

    related to: excel smooth data function

Search results

  1. Results From The WOW.Com Content Network
  2. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably ...

  3. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  4. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.

  5. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    In this way smooth functions between manifolds can transport local data, like vector fields and differential forms, from one manifold to another, or down to Euclidean space where computations like integration are well understood. Preimages and pushforwards along smooth functions are, in general, not manifolds without additional assumptions.

  8. Scatterplot smoothing - Wikipedia

    en.wikipedia.org/wiki/Scatterplot_smoothing

    Smoothing attempts to separate the non-random behaviour in the data from the random fluctuations, removing or reducing these fluctuations, and allows prediction of the response based value of the explanatory variable. [1] [2] Smoothing is normally accomplished by using any one of the techniques mentioned below.

  9. Moving average - Wikipedia

    en.wikipedia.org/wiki/Moving_average

    Each weighting function or "kernel" has its own characteristics. In engineering and science the frequency and phase response of the filter is often of primary importance in understanding the desired and undesired distortions that a particular filter will apply to the data. A mean does not just "smooth" the data. A mean is a form of low-pass filter.