When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably ...

  3. Scatterplot smoothing - Wikipedia

    en.wikipedia.org/wiki/Scatterplot_smoothing

    Smoothing attempts to separate the non-random behaviour in the data from the random fluctuations, removing or reducing these fluctuations, and allows prediction of the response based value of the explanatory variable. [1] [2] Smoothing is normally accomplished by using any one of the techniques mentioned below.

  4. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    The "moving average filter" is a trivial example of a Savitzky–Golay filter that is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. Each subset of the data set is fit with a straight horizontal line as opposed to a higher order polynomial.

  5. Moving average - Wikipedia

    en.wikipedia.org/wiki/Moving_average

    A moving average is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles - in this case the calculation is sometimes called a time average. The threshold between short-term and long-term depends on the application, and the parameters of the moving average will be set accordingly.

  6. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  7. Additive smoothing - Wikipedia

    en.wikipedia.org/wiki/Additive_smoothing

    where the smoothed count ^ = ^, and the "pseudocount" α > 0 is a smoothing parameter, with α = 0 corresponding to no smoothing (this parameter is explained in § Pseudocount below). Additive smoothing is a type of shrinkage estimator , as the resulting estimate will be between the empirical probability ( relative frequency ) x i / N ...

  8. How to Shut Off Motion Smoothing — and Why You Should - AOL

    www.aol.com/entertainment/shut-off-motion...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.