When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).

  3. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .

  4. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    Phase comparison is a comparison of the phase of two waveforms, usually of the same nominal frequency. In time and frequency, the purpose of a phase comparison is generally to determine the frequency offset (difference between signal cycles) with respect to a reference. [3]

  5. Spatial frequency - Wikipedia

    en.wikipedia.org/wiki/Spatial_frequency

    The value of each data point in k-space is measured in the unit of 1/meter, i.e. the unit of spatial frequency. It is very common that the raw data in k-space shows features of periodic functions. The periodicity is not spatial frequency, but is temporal frequency. An MRI raw data matrix is composed of a series of phase-variable spin-echo signals.

  6. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  7. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  8. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    where is the speed of the wave, the fundamental frequency can be found in terms of the speed of the wave and the length of the pipe: f 0 = v 4 L {\displaystyle f_{0}={\frac {v}{4L}}} If the ends of the same pipe are now both closed or both opened, the wavelength of the fundamental harmonic becomes 2 L {\displaystyle 2L} .

  9. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. [8] Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the speed of light can be determined from observation of standing waves in a metal box containing an ideal vacuum.