Search results
Results From The WOW.Com Content Network
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion compound.
For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.
For compounds that contain cation-cation or anion-anion bonds it is usually possible to transform these homoionic bonds into cation-anion bonds either by treating the atoms linked by the homoionic bond as a single complex cation (e.g., Hg 2 2+), or by treating the bonding electrons in the homoionic bond as a pseudo-anion to transform a cation ...
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The cations calcium (Ca 2+) and magnesium (Mg 2+) are also commonly measured, but they aren't used to calculate the anion gap. Anions that are generally considered "unmeasured" include a few normally occurring serum proteins , and some pathological proteins (e.g., paraproteins found in multiple myeloma).
The cation transport number of the leading solution is then calculated as + = + where + is the cation charge, c the concentration, L the distance moved by the boundary in time Δt, A the cross-sectional area, F the Faraday constant, and I the electric current. [1]
From the ionic molar conductivities of cations and anions, effective ionic radii can be calculated using the concept of Stokes radius. The values obtained for an ionic radius in solution calculated this way can be quite different from the ionic radius for the same ion in crystals, due to the effect of hydration in solution.