When.com Web Search

  1. Ad

    related to: simplifying equations with imaginary numbers answer

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Cardano and other Italian mathematicians, notably Scipione del Ferro, in the 1500s created an algorithm for solving cubic equations which generally had one real solution and two solutions containing an imaginary number. Because they ignored the answers with the imaginary numbers, Cardano found them useless. [23]

  3. Milne-Thomson method for finding a holomorphic function

    en.wikipedia.org/wiki/Milne-Thomson_method_for...

    Let = + and ¯ = where and are real.. Let () = (,) + (,) be any holomorphic function.. Example 1: = (+) + Example 2: ⁡ = ⁡ ⁡ + ⁡ ⁡ In his article, [1] Milne ...

  4. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    To begin solving, we multiply each side of the equation by the least common denominator of all the fractions contained in the equation. In this case, the least common denominator is () (+). After performing these operations, the fractions are eliminated, and the equation becomes:

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    When s is a complex number—one that looks like a+b𝑖, using the imaginary number 𝑖—finding 𝜁(s) gets tricky. So tricky, in fact, that it’s become the ultimate math question.

  6. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    All quadratic equations have exactly two solutions in complex numbers (but they may be equal to each other), a category that includes real numbers, imaginary numbers, and sums of real and imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the quadratic formula.

  7. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...

  9. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .