Search results
Results From The WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
[3] [5] The 0.05 significance level (alpha level) is often used as the boundary between a statistically significant and a statistically non-significant p-value. However, this does not imply that there is generally a scientific reason to consider results on opposite sides of any threshold as qualitatively different. [3] [6]
The term significance does not imply importance here, and the term statistical significance is not the same as research significance, theoretical significance, or practical significance. [1] [2] [18] [19] For example, the term clinical significance refers to the practical importance of a treatment effect. [20]
For a given significance level in a two-tailed test for a test statistic, the corresponding one-tailed tests for the same test statistic will be considered either twice as significant (half the p-value) if the data is in the direction specified by the test, or not significant at all (p-value above ) if the data is in the direction opposite of ...
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
The statistical significance of each B is tested by the Wald Chi-Square—testing the null that the B coefficient = 0 (the alternate hypothesis is that it does not = 0). p-values lower than alpha are significant, leading to rejection of the null. Here, only the independent variables felony, rehab, employment, are significant ( P-Value<0.05.
A significance level of 0.05 is often used as the cutoff between significant and non-significant results. The table below gives a number of p -values matching to χ 2 {\displaystyle \chi ^{2}} for the first 10 degrees of freedom.
[3] [4] The use of a P value cut-off point of 0.05 was introduced by R.A. Fisher; this led to study results being described as either statistically significant or non-significant. [5] Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important ...