Search results
Results From The WOW.Com Content Network
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Unordered map can refer to: Unordered associative containers (C++) Hash table; Associative array This page was last edited on 30 ...
A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
The user defined function can be used as is in std::unordered_map, by passing it as a template parameter std :: unordered_map < X , int , hash_X > my_map ; Or can be set as the default hash function by specializing the std::hash function
An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing. More generally, an unordered n-tuple is a set of the form {a 1, a 2,... a n}. [5] [6] [7]
The statement that this is the only quadratic pairing function is known as the Fueter–Pólya theorem. [9] Whether this is the only polynomial pairing function is still an open question. When we apply the pairing function to k 1 and k 2 we often denote the resulting number as k 1, k 2 . [citation needed]
Therefore, compilers will attempt to transform the first form into the second; this type of optimization is known as map fusion and is the functional analog of loop fusion. [2] Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f .
r : E → {{x,y} : x, y ∈ V}, assigning to each edge an unordered pair of endpoint nodes. Some authors allow multigraphs to have loops , that is, an edge that connects a vertex to itself, [ 2 ] while others call these pseudographs , reserving the term multigraph for the case with no loops.