Search results
Results From The WOW.Com Content Network
In flow regions where vorticity is known to be important, such as wakes and boundary layers, potential flow theory is not able to provide reasonable predictions of the flow. [1] Fortunately, there are often large regions of a flow where the assumption of irrotationality is valid which is why potential flow is used for various applications.
Here the fluid is subject to the Taylor-Proudman theorem which says that small motions will tend to produce purely two-dimensional perturbations to the overall rotational flow. However, in this case the effects of rotation and viscosity are usually characterized by the Ekman number and the Rossby number rather than by the Taylor number.
The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups. Specific examples of vector flows include the geodesic flow , the Hamiltonian flow , the Ricci flow , the mean curvature flow , and Anosov flows .
The problem has a cylindrical symmetry and can be treated in two dimensions on the orthogonal plane. Line sources and line sinks (below) are important elementary flows because they play the role of monopole for incompressible fluids (which can also be considered examples of solenoidal fields i.e. divergence free fields).
Examples of common boundary conditions include the velocity of the fluid, determined by =, being 0 on the boundaries of the system. There is a great amount of overlap with electromagnetism when solving this equation in general, as the Laplace equation also models the electrostatic potential in a vacuum.
For example, in the laminar flow within a pipe with constant cross section, all particles travel parallel to the axis of the pipe; but faster near that axis, and practically stationary next to the walls. The vorticity will be zero on the axis, and maximum near the walls, where the shear is largest.
The curl of the vector field at any point is given by the rotation of an infinitesimal area in the xy-plane (for z-axis component of the curl), zx-plane (for y-axis component of the curl) and yz-plane (for x-axis component of the curl vector). This can be seen in the examples below.
Rotordynamics (or rotor dynamics) is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage.