Search results
Results From The WOW.Com Content Network
This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6. Each of the products listed below, and in particular, the products for 3 and −6, is the only way that the relevant number can be written as a product of 7 and another real number:
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
Here, 3 (the multiplier) and 4 (the multiplicand) are the factors, and 12 is the product. One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3: = + + + =
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS ). a 0 ( n ) is the sum of primes dividing n , counted with multiplicity.
The Cauchy product of two infinite series is defined even when both of them are divergent. In the case where a n = b n = (−1) n, ... is 1 − 4 + 10 − 20 + ...
The problem can be presented in different ways, giving the same basic information: the product, that the sum is known, and that there is an oldest child (e.g. their ages adding up to today's date, [3] or the eldest being good at chess [4]).