When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The divergence of a vector field is often illustrated using the simple example of the velocity field of a fluid, a liquid or gas. A moving gas has a velocity, a speed and direction at each point, which can be represented by a vector, so the velocity of the gas forms a vector field. If a gas is heated, it will expand.

  3. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  4. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...

  5. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    With this form for the displacement, the velocity now is found. The time derivative of the displacement vector is the velocity vector. In general, the derivative of a vector is a vector made up of components each of which is the derivative of the corresponding component of the original vector. Thus, in this case, the velocity vector is:

  6. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  8. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    Gradient of the 2D function f(x, y) = xe −(x 2 + y 2) is plotted as arrows over the pseudocolor plot of the function.. Consider a room where the temperature is given by a scalar field, T, so at each point (x, y, z) the temperature is T(x, y, z), independent of time.

  9. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...