Search results
Results From The WOW.Com Content Network
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful ) has multiplicity above 1 for all prime factors.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...
This representation is commonly extended to all positive integers, including 1, by the convention that the empty product is equal to 1 (the empty product corresponds to k = 0). This representation is called the canonical representation [10] of n, or the standard form [11] [12] of n. For example, 999 = 3 3 ×37, 1000 = 2 3 ×5 3, 1001 = 7×11×13.
If gcd(a, b) = 1, then a and b are said to be coprime (or relatively prime). [4] This property does not imply that a or b are themselves prime numbers. [5] For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1.
180 is a 61-gonal number, [2] while 61 is the 18th prime number. Half a circle has 180 degrees, [7] and thus a U-turn is also referred to as a 180. Summing Euler's totient function φ(x) over the first + 24 integers gives 180. In binary it is a digitally balanced number, since its binary representation has the same number of zeros as ones ...
For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .