When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  3. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [35] [36] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  5. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    An efficient, scalable implementation of XGBoost has been published by Tianqi Chen and Carlos Guestrin. [16] While the XGBoost model often achieves higher accuracy than a single decision tree, it sacrifices the intrinsic interpretability of decision trees.

  6. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    This interpretability is one of the main advantages of decision trees. It allows developers to confirm that the model has learned realistic information from the data and allows end-users to have trust and confidence in the decisions made by the model. [37] [3] For example, following the path that a decision tree takes to make its decision is ...

  8. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    Instead, LightGBM implements a highly optimized histogram-based decision tree learning algorithm, which yields great advantages on both efficiency and memory consumption. [12] The LightGBM algorithm utilizes two novel techniques called Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) which allow the algorithm to run ...

  9. Monte Carlo tree search - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_tree_search

    The rating of best Go-playing programs on the KGS server since 2007. Since 2006, all the best programs use Monte Carlo tree search. [14]In 2006, inspired by its predecessors, [15] Rémi Coulom described the application of the Monte Carlo method to game-tree search and coined the name Monte Carlo tree search, [16] L. Kocsis and Cs.