When.com Web Search

  1. Ads

    related to: help solving linear inequalities calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas. [1] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...

  3. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.

  4. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the ...

  5. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution. Polyhedron of simplex algorithm in 3D. The simplex algorithm operates on linear programs in the canonical form.

  6. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination. Mathematical algorithm for eliminating variables from a system of linear inequalities. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting ...

  7. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...