Search results
Results From The WOW.Com Content Network
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = be mod m = d−e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
In computer programming, an arithmetic shift is a shift operator, sometimes termed a signed shift (though it is not restricted to signed operands). The two basic types are the arithmetic left shift and the arithmetic right shift. For binary numbers it is a bitwise operation that shifts all of the bits of its operand; every bit in the operand is ...
Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.
t. e. In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. [1]: 3 [2]: 10 For example, 12.345 is a floating-point number in base ten ...
In algebra, the terms left and right denote the order of a binary operation (usually, but not always, called "multiplication") in non- commutative algebraic structures. A binary operation ∗ is usually written in the infix form: s ∗ t. The argument s is placed on the left side, and the argument t is on the right side.
Associative property. In mathematics, the associative property[1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...