Search results
Results From The WOW.Com Content Network
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
For example, if the concentration of the conjugate base is 10 times greater than the concentration of the acid, their ratio is 10:1, and consequently the pH is pK a + 1 or pK b + 1. Conversely, if a 10-fold excess of the acid occurs with respect to the base, the ratio is 1:10 and the pH is p K a − 1 or p K b − 1.
When a strong acid is dissolved in water, it reacts with it to form hydronium ion (H 3 O +). [2] An example of this would be the following reaction, where "HA" is the strong acid: HA + H 2 O → A − + H 3 O + Any acid that is stronger than H 3 O + reacts with H 2 O to form H 3 O +. Therefore, no acid stronger than H 3 O + exists in H 2 O.
Strong acids, such as sulfuric or phosphoric acid, have large dissociation constants; weak acids, such as acetic acid, have small dissociation constants. The symbol K a , used for the acid dissociation constant, can lead to confusion with the association constant , and it may be necessary to see the reaction or the equilibrium expression to ...
The converse is true in a basic medium. For example, Naproxen is a non-steroidal anti-inflammatory drug that is a weak acid (its pKa value is 5.0). The gastric juice has a pH of 2.0. It is a three-fold difference (due to log scale) between its pH and its pKa; therefore there is a 1000× difference between the charged and uncharged concentrations.
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.