When.com Web Search

  1. Ad

    related to: equation to find nth term arithmetic sequence formula example questions

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  4. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    One such notation is to write down a general formula for computing the nth term as a function of n, enclose it in parentheses, and include a subscript indicating the set of values that n can take. For example, in this notation the sequence of even numbers could be written as ( 2 n ) n ∈ N {\textstyle (2n)_{n\in \mathbb {N} }} .

  5. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    The n th term describes the length of the n th run A000002: Euler's totient function φ(n) 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1 ...

  6. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 in the OEIS), even though we do not have a formula for the nth perfect number.

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    It concerns sequences of integers in which each term is obtained from the previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.

  8. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    An excellent example of Harmonic Progression is the Leaning Tower of Lire. In it, uniform blocks are stacked on top of each other to achieve the maximum sideways or lateral distance covered. The blocks are stacked 1/2, 1/4, 1/6, 1/8, 1/10, … distance sideways below the original block.

  9. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.