Search results
Results From The WOW.Com Content Network
Other environmental satellites can assist environmental monitoring by detecting changes in the Earth's vegetation, atmospheric trace gas content, sea state, ocean color, and ice fields. By monitoring vegetation changes over time, droughts can be monitored by comparing the current vegetation state to its long term average. [12]
Part of the worldwide Disaster Monitoring Constellation System NOAA-15, 18, and 19: Active NASA, ESA, and NOAA: 1998 Part of the Polar Operational Environmental Satellites (POES) program. NOAA-20: Active NASA and NOAA: 2017 Part of the Joint Polar Satellite System (JPSS) program. Oceansat-2: Active ISRO: 2009 OCO-2: Active NASA 2014 Orbiting ...
The launch of GOES-N, which was renamed GOES-13 after attaining orbit. The Geostationary Operational Environmental Satellite (GOES), operated by the United States' National Oceanic and Atmospheric Administration (NOAA)'s National Environmental Satellite, Data, and Information Service division, supports weather forecasting, severe storm tracking, and meteorology research.
Soil Moisture Active Passive (SMAP) is a NASA environmental monitoring satellite that measures soil moisture across the planet. It is designed to collect a global 'snapshot' of soil moisture every 2 to 3 days.
The primary objective of TIROS-1 was to explore television infrared observation as a method of monitoring and studying the surface of Earth. Critical to the development of the satellites currently in use, TIROS-1 was a program that allowed NASA to use experimental instruments and data collection methods to study meteorology worldwide.
The Polar-orbiting Operational Environmental Satellite (POES) is a constellation of polar orbiting weather satellites funded by the National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with the intent of improving the accuracy and detail of weather analysis and forecasting. [1]
The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate monitoring.
Other types of environmental information are collected using weather satellites. Weather satellite images helped in monitoring the volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna. [2] Smoke from fires in the western United States such as Colorado and Utah have also been monitored.