Search results
Results From The WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
A liver sinusoid is a type of capillary known as a sinusoidal capillary, discontinuous capillary or sinusoid, that is similar to a fenestrated capillary, having discontinuous endothelium that serves as a location for mixing of the oxygen-rich blood from the hepatic artery and the nutrient-rich blood from the portal vein.
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
Simple examples of periodic waveforms include the following, where is time, is wavelength, is amplitude and is phase: . Sine wave: (,,,) = . The amplitude of the waveform follows a trigonometric sine function with respect to time.
It follows that, for two sinusoidal signals and with same frequency and amplitudes and , and has phase shift +90° relative to , the sum + is a sinusoidal signal with the same frequency, with amplitude and phase shift < < + from , such that = + = /.
The term alternating current applies to a voltage vs. time function that is sinusoidal with a frequency f. When it is applied to a typical (linear time-invariant) circuit or device, it causes a current that is also sinusoidal. In general there is a constant phase difference φ between any two sinusoids. The input sinusoidal voltage is usually ...
This sinusoidal model can be fit using nonlinear least squares; to obtain a good fit, routines may require good starting values for the unknown parameters. Fitting a model with a single sinusoid is a special case of spectral density estimation and least-squares spectral analysis .
The same sinusoidal plane wave above can also be expressed in terms of sine instead of cosine using the elementary identity = (+ /) (,) = ((^) + ′) where ′ = + /.Thus the value and meaning of the phase shift depends on whether the wave is defined in terms of sine or co-sine.