When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the RobertsonSeymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.

  3. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  4. Hadwiger conjecture (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Hadwiger_conjecture_(graph...

    Robertson, Seymour & Thomas (1993) proved the conjecture for =, also using the four color theorem; their paper with this proof won the 1994 Fulkerson Prize. It follows from their proof that linklessly embeddable graphs, a three-dimensional analogue of planar graphs, have chromatic number at most five. [3]

  5. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the RobertsonSeymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...

  6. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.

  7. Paul Seymour (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Paul_Seymour_(mathematician)

    Paul D. Seymour FRS (born 26 July 1950) is a British mathematician known for his work in discrete mathematics, especially graph theory.He (with others) was responsible for important progress on regular matroids and totally unimodular matrices, the four colour theorem, linkless embeddings, graph minors and structure, the perfect graph conjecture, the Hadwiger conjecture, claw-free graphs, χ ...

  8. Strong perfect graph theorem - Wikipedia

    en.wikipedia.org/wiki/Strong_perfect_graph_theorem

    The proof of the strong perfect graph theorem by Chudnovsky et al. follows an outline conjectured in 2001 by Conforti, Cornuéjols, Robertson, Seymour, and Thomas, according to which every Berge graph either forms one of five types of basic building block (special classes of perfect graphs) or it has one of four different types of structural ...

  9. Talk:Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/Talk:RobertsonSeymour...

    So, I would hesitate to call the Wagner's conjecture to be Robertson-Seymour theorem. Can anyone comment if this was really proved and if this theorem has been acknowledged as such by the mathematical community? --Drini 23:12, 20 Feb 2005 (UTC) Yes. The last paper for the Robertson-Seymour theorem was already published in 2004. Graph Minors. XX.