Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]
Recall from above that an n×n matrix exp(tA) amounts to a linear combination of the first n −1 powers of A by the Cayley–Hamilton theorem. For diagonalizable matrices, as illustrated above, e.g. in the 2×2 case, Sylvester's formula yields exp(tA) = B α exp(tα) + B β exp(tβ), where the B s are the Frobenius covariants of A.
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
Examples of algorithms that require at least 2-EXPTIME include: Each decision procedure for Presburger arithmetic provably requires at least doubly exponential time [2] Computing a Gröbner basis over a field. In the worst case, a Gröbner basis may have a number of elements which is doubly exponential in the number of variables.
This is a list of notable programming languages with features designed for object-oriented programming (OOP). The listed languages are designed with varying degrees of OOP support. Some are highly focused in OOP while others support multiple paradigms including OOP.
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2 p(n)) time, where p(n) is a polynomial function of n.
[9] [10] What's more, the gradient descent backpropagation method for training such a neural network involves calculating the softmax for every training example, and the number of training examples can also become large. The computational effort for the softmax became a major limiting factor in the development of larger neural language models ...