Ads
related to: recombinant dna uses
Search results
Results From The WOW.Com Content Network
Recombinant DNA is widely used in biotechnology, medicine and research. Today, recombinant proteins and other products that result from the use of DNA technology are found in essentially every pharmacy, physician or veterinarian office, medical testing laboratory, and biological research laboratory.
Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.
In genetic engineering, recombination can also refer to artificial and deliberate recombination of disparate pieces of DNA, often from different organisms, creating what is called recombinant DNA. A prime example of such a use of genetic recombination is gene targeting , which can be used to add, delete or otherwise change an organism's genes.
Recombinant DNA (rDNA), or molecular cloning, is the process by which a single gene, or segment of DNA, is isolated and amplified. Recombinant DNA is also known as in vitro recombination. A cloning vector is a DNA molecule that carries foreign DNA into a host cell, where it
The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome. [1]
Many methods for introducing DNA sequences into organisms to create recombinant DNA and genetically modified organisms use the process of homologous recombination. [117] Also called gene targeting, the method is especially common in yeast and mouse genetics.
A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. [2] Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.
The following is a list of notable proteins that are produced from recombinant DNA, using biomolecular engineering. [1] In many cases, recombinant human proteins have replaced the original animal-derived version used in medicine. The prefix "rh" for "recombinant human" appears less and less in the literature.