When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  3. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof. Sturm passed the request on to other mathematicians and Steiner was among the first to provide a solution.

  4. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    A direct proof using classical geometry was developed by James Mercer in 1923. [2] This solution involves drawing one additional line, and then making repeated use of the fact that the internal angles of a triangle add up to 180° to prove that several triangles drawn within the large triangle are all isosceles.

  5. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    A well-known fallacy is the false proof of the statement that all triangles are isosceles, first published by W. W. Rouse Ball in 1892, [53] and later republished in Lewis Carroll's posthumous Lewis Carroll Picture Book. [54]

  6. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    Lexell's proof by breaking the triangle A ∗ B ∗ C into three isosceles triangles. The main idea in Lexell's c. 1777 geometric proof – also adopted by Eugène Catalan (1843), Robert Allardice (1883), Jacques Hadamard (1901), Antoine Gob (1922), and Hiroshi Maehara (1999) – is to split the triangle into three isosceles triangles with common apex at the circumcenter and then chase angles ...

  7. Category:Theorems about triangles - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Sylvester's triangle problem; T. Thomsen's theorem This page was last edited on 2 June 2024, at 17:31 (UTC). Text is available under the Creative Commons ...

  8. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Since OA = OB = OC, OBA and OBC are isosceles triangles, and by the equality of the base angles of an isosceles triangle, ∠ OBC = ∠ OCB and ∠ OBA = ∠ OAB. Let α = ∠ BAO and β = ∠ OBC. The three internal angles of the ∆ABC triangle are α, (α + β), and β. Since the sum of the angles of a triangle is equal to 180°, we have

  9. Equilateral triangle - Wikipedia

    en.wikipedia.org/wiki/Equilateral_triangle

    An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.