When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.

  3. Reflection formula - Wikipedia

    en.wikipedia.org/wiki/Reflection_formula

    In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation . It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.

  4. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    All definitions tacitly require the homogeneous relation be transitive: for all ,,, if and then . A term's definition may require additional properties that are not listed in this table. In mathematics , a binary relation R {\displaystyle R} on a set X {\displaystyle X} is reflexive if it relates every element of X {\displaystyle X} to itself.

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These equations can be proved through straightforward matrix multiplication and application of trigonometric identities, specifically the sum and difference identities.. The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group.

  6. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

  7. Weyl group - Wikipedia

    en.wikipedia.org/wiki/Weyl_group

    In fact it turns out that most finite reflection groups are Weyl groups. [1] Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these. The Weyl group of a semisimple Lie group, a semisimple Lie algebra, a semisimple linear algebraic group, etc. is the Weyl group of the root system of that group or algebra.

  8. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The dihedral group D 2 is generated by the rotation r of 180 degrees, and the reflection s across the x-axis. The elements of D 2 can then be represented as {e, r, s, rs}, where e is the identity or null transformation and rs is the reflection across the y-axis. The four elements of D 2 (x-axis is vertical here) D 2 is isomorphic to the Klein ...

  9. Reflection group - Wikipedia

    en.wikipedia.org/wiki/Reflection_group

    In group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group.