When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.

  4. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    Architects, engineers, and contractors use these equations to create "flattened" arcs that are used in curved walls, arched ceilings, bridges, and numerous other applications. The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle.

  5. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Curvature radius of lens/mirror r, R: m [L] Focal length f: m ... Defining equation ... The Cambridge Handbook of Physics Formulas. Cambridge University Press.

  6. Sagitta (optics) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(optics)

    where R is the radius of curvature of the optical surface. The sag S ( r ) is the displacement along the optic axis of the surface from the vertex, at distance r {\displaystyle r} from the axis. A good explanation both of this approximate formula and the exact formula can be found here .

  7. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The reciprocal of the curvature is called the radius of curvature. A circle with radius r has a constant curvature of κ ( t ) = 1 r {\displaystyle \kappa (t)={\frac {1}{r}}} whereas a line has a curvature of 0.

  8. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point. A geometric construction was described by Isaac Newton in his Principia:

  9. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    There are two commonly used choices for a and k which describe the same physics: k = +1, 0 or −1 depending on whether the shape of the universe is a closed 3-sphere, flat (Euclidean space) or an open 3-hyperboloid, respectively. [3] If k = +1, then a is the radius of curvature of the universe.