When.com Web Search

  1. Ad

    related to: inverse geometry example in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...

  3. Inverse curve - Wikipedia

    en.wikipedia.org/wiki/Inverse_curve

    In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.

  4. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  5. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    For example, the inverse of a cubic function with a local maximum and a local minimum has three branches (see the adjacent picture). The arcsine is a partial inverse of the sine function. These considerations are particularly important for defining the inverses of trigonometric functions. For example, the sine function is not one-to-one, since

  6. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The notations sin −1 (x), cos −1 (x), tan −1 (x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin [−1] (x), cos [−1] (x), tan [−1] (x) – conventions consistent with the notation of an inverse function, that is useful (for example ...

  7. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    Example of a 2-dimensional figure with central symmetry, invariant under point reflection Dual tetrahedra that are centrally symmetric to each other In geometry , a point reflection (also called a point inversion or central inversion ) is a geometric transformation of affine space in which every point is reflected across a designated inversion ...

  8. Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_Pythagorean_theorem

    In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then

  9. Sphere eversion - Wikipedia

    en.wikipedia.org/wiki/Sphere_eversion

    This is illustrated in the computer-graphics animation Outside In developed at the Geometry Center under the direction of Silvio Levy, Delle Maxwell and Tamara Munzner. [2] Combining the above methods, the complete sphere eversion can be described by a set of closed equations giving minimal topological complexity [1]