Search results
Results From The WOW.Com Content Network
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.
Thorium is fertile material, and essentially all thorium can be used in a nuclear reactor. Thorium is not fissile in itself, absorbs a neutron to transmute into uranium-233, which can fission to produce energy. Therefore, a thorium based fuel cycle produces very little, easily manageable waste compared to uranium. [20]
In some molten salt-fueled reactor designs, such as the liquid fluoride thorium reactor (LFTR), this fuel salt is also the coolant; in other designs, such as the stable salt reactor, the fuel salt is contained in fuel pins and the coolant is a separate, non-radioactive salt. There is a further category of molten salt-cooled reactors in which ...
A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material. Two research MSRs operated in the United States in the mid-20th century.
It could use thorium as a fuel, which is more abundant than uranium. [1] The neutrons needed for sustaining the fission process would be provided by a particle accelerator producing neutrons by spallation or photo-neutron production. These neutrons activate the thorium, enabling fission without needing to make the reactor critical.
TAE’s machine is a linear reactor that is completely non-radioactive because it uses hydrogen and boron: two abundant, naturally-occurring elements that react to produce only helium. ITER, by ...
The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. [1] This phase of the fuel cycle plan was supposed to be built starting with a 300 MWe prototype in 2016. [2]