When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The polynomials, exponential function e x, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b.

  3. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  4. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .

  5. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    where B is the incomplete beta function. A Poisson compounded with Log( p )-distributed random variables has a negative binomial distribution . In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ...

  6. Lacunary function - Wikipedia

    en.wikipedia.org/wiki/Lacunary_function

    Domain coloring of the 128th partial sum of the lacunary function =.. In analysis, a lacunary function, also known as a lacunary series, is an analytic function that cannot be analytically continued anywhere outside the radius of convergence within which it is defined by a power series.

  7. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  8. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1. The unique solution of this problem is the function u(x) = (1 + x) α.

  9. Colin Maclaurin - Wikipedia

    en.wikipedia.org/wiki/Colin_Maclaurin

    Maclaurin used Taylor series to characterize maxima, minima, and points of inflection for infinitely differentiable functions in his Treatise of Fluxions. Maclaurin attributed the series to Brook Taylor, though the series was known before to Newton and Gregory, and in special cases to Madhava of Sangamagrama in fourteenth century India. [6]