Search results
Results From The WOW.Com Content Network
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
Ethylene and ethane that are proposed products have C-H bonds of similar strength. Thus, any catalyst that can activate methane can also activate the products. The yield of ethylene (and/or ethane) is limited by the relative rates of the methane and ethylene reactions, and these rates are very similar.
Relation between chemical reaction conversion selectivity and yield. In chemical reaction engineering, "yield", "conversion" and "selectivity" are terms used to describe ratios of how much of a reactant has reacted—conversion, how much of a desired product was formed—yield, and how much desired product was formed in ratio to the undesired product—selectivity, represented as X, S, and Y.
The chief use of ethane is the production of ethylene (ethene) by steam cracking. Steam cracking of ethane is fairly selective for ethylene, while the steam cracking of heavier hydrocarbons yields a product mixture poorer in ethylene and richer in heavier alkenes (olefins), such as propene (propylene) and butadiene, and in aromatic hydrocarbons.
It is the principal industrial method for producing the lighter alkenes (or commonly olefins), including ethene (or ethylene) and propene (or propylene). Steam cracker units are facilities in which a feedstock such as naphtha, liquefied petroleum gas (LPG), ethane , propane or butane is thermally cracked through the use of steam in a bank of ...
Ethylene is produced by several methods in the petrochemical industry. A primary method is steam cracking (SC) where hydrocarbons and steam are heated to 750–950 °C. This process converts large hydrocarbons into smaller ones and introduces unsaturation. When ethane is the feedstock, ethylene is the product.
The main differences between each of them concerns the catalyst employed, design of the reactor and strategies to achieve higher conversion rates. [1] Olefins are useful precursors to myriad products. Steam cracking is the core technology that supports the largest scale chemical processes, i.e. ethylene and propylene. [2]
In the case of dicobalt octacarbonyl or Co 2 (CO) 8 as a catalyst, pentan-3-one can arise from ethene and CO, in the absence of hydrogen. A proposed intermediate is the ethylene-propionyl species [CH 3 C(O)Co(CO) 3 (ethene)] which undergoes a migratory insertion to form [CH 3 COCH 2 CH 2 Co(CO) 3]. The required hydrogen arises from the water ...