Search results
Results From The WOW.Com Content Network
The asthenosphere is a part of the upper mantle just below the lithosphere that is involved in plate tectonic movement and isostatic adjustments. It is composed of peridotite, a rock containing mostly the minerals olivine and pyroxene. [2] The lithosphere-asthenosphere boundary is conventionally taken at the 1,300 °C (2,370 °F) isotherm.
Plate motion based on Global Positioning System (GPS) satellite data from NASA JPL. Each red dot is a measuring point and vectors show direction and magnitude of motion. Tectonic plates are able to move because of the relative density of oceanic lithosphere and the relative weakness of the asthenosphere.
A diagram of the internal structure of Earth. The lithosphere consists of the crust and upper solid mantle (lithospheric mantle). The green dashed line marks the LAB. The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure.
Plate tectonics map from NASA. This is a list of tectonic plates on Earth's surface. Tectonic plates are pieces of Earth's crust and uppermost mantle, together referred to as the lithosphere.
Earth's lithosphere, the rigid outer shell of the planet including the crust and upper mantle, is fractured into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary (or fault): convergent, divergent, or transform ...
The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle. The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath ...
As delamination continues, more asthenosphere rises to replace the lower lithosphere as it sinks. This process causes three different changes to occur which can have an effect on the delamination process. [1] If the viscosity of the upwelling asthenosphere is greater than that of the mantle lithosphere, delamination will stop.
The convection of the Earth's mantle is a chaotic process (in the sense of fluid dynamics), which is thought to be an integral part of the motion of plates. Plate motion should not be confused with continental drift which applies purely to the movement of the crustal components of the continents. The movements of the lithosphere and the ...